19 de enero de 2013

Satélites de la ESA descubren olas monstruosas que hunden barcos.


Nota: Un barco es diseñado habitualmente para resistir presiones producidas por olas de tormenta de hasta 15 m y presiones de alrededor de 15 t/m² (147 kPa) sin daño, incluso algo más (sobre 20 m) si se le permite cierta deformación. Wikipedia.


PUBLIC RELEASE DATE: 21 julio 2004
Contact: MariangelaD'Acunto; mariangela.d'acunto@esa.int
39-069-418-0856
European Space Agency
Se las consideraba un mito marino: olas de hasta diez pisos de altura que pueden hundir navíos. Ahora, se ha descubierto que verdaderamente existen. Los resultados de la nave espacial ERS de la ESA han ayudado a determinar que estas olas gigantes existen en realidad, y ahora se utilizan para estudiar sus orígenes.


Durante las pasadas dos décadas, las tormentas han hundido más de 200 superpetroleros y barcos de contenedores de más de 200 metros de eslora. Se cree que las olas gigantes han sido la causa principal en muchos de esos casos. Los marineros que han sobrevivido a tales encuentros cuentan historias notables. En febrero de 1995 el trasatlántico Queen Elizabeth II se encontró con una ola gigante de 29 metros de alto durante un huracán en el Atlántico Norte, a la que el capitán Ronald Warwick describió como "una inmensa muralla de agua… parecía como si nos abalanzáramos hacia los acantilados, los White Cliffs, de Dover".

Y en la semana entre febrero y marzo de 2001, a dos robustos cruceros turísticos –el Bremen y el CaledonianStar– olas gigantes de 30 metros les destrozaron las ventanas del puente en el Atlántico Sur. El primero quedó a la deriva sin navegación ni propulsión durante dos horas.

"Los incidentes se produjeron a menos de mil kilómetros de distancia entre sí", dijo Wolfgang Rosenthal –Científico Senior del centro de investigaciones GKSS ForschungszentrumGmbH, con sede en Geesthacht, Alemania– quien ha estudiado las olas gigantes durante años. "Toda la electrónica fue apagada en el Bremen mientras éste derivaba en paralelo a las olas, y hasta que la encendieron nuevamente, la tripulación pensaba que ese podría haber sido su último día de vida.

"El mismo fenómeno podría haber hundido navíos menos afortunados: en promedio, dos grandes barcos se hunden por semana, pero la causa nunca se estudia con el mismo detenimiento que un desastre aéreo. Sencillamente se lo atribuye al «mal tiempo»".

El fenómeno ha afectado también a las plataformas de alta mar: el 1 de enero de 1995 la plataforma petrolera Draupner en el Mar del Norte fue alcanzada por una ola que medía, según un dispositivo láser de a bordo, 26 metros, y las olas mayores a su alrededor eran de hasta 12 metros.
Pruebas objetivas logradas por radar en esta y otras plataformas –los datos de radar de la plataforma petrolífera Goma del Mar del Norte registraron 466 olas gigantescas en 12 años– ayudaron a convencer a científicos anteriormente escépticos, cuyas estadísticas mostraban que desviaciones tan notables del estado del mar circundante debieran producirse solamente una vez cada 10.000 años.

El hecho de que las olas gigantes en realidad se producen con relativa frecuencia tiene importantes implicaciones económicas y de seguridad, dado que los barcos y plataformas actuales están construidos para soportar olas con una altura máxima de solamente 15 metros.

En diciembre de 2000, la Unión Europea inició un proyecto científico llamado MaxWave para confirmar la frecuencia y localización de olas gigantes, modelar cómo se producen y considerar sus implicaciones para los criterios de diseño de barcos y plataformas petrolíferas. Y como parte de MaxWave, los datos de los satélites de radar ERS de la ESA fueron los primeros utilizados para efectuar un censo mundial de olas gigantes.

"Sin cobertura aérea de sensores de radar no teníamos posibilidades de encontrar nada", añadió Rosenthal, quien encabezó el proyecto de tres años MaxWave. "Todo lo que teníamos para avanzar era los datos de radar recogidos de plataformas petroleras. Así que estábamos interesados en usar ERS desde el principio."
Los dos satélites gemelos de ESA, ERS 1 y 2 –lanzados en julio de 1991 y abril de 1995 respectivamente– tienen ambos un radar de apertura sintética (SAR, por sus siglas en inglés) como instrumento principal.

El SAR trabaja en varias modalidades distintas; mientras está sobre el océano trabaja en modo de ola, adquiriendo "pequeñas imágenes" (imagettes) de 10 por 5 km de la superficie del mar cada 200 km.
Estas pequeñas imágenes son luego transformadas matemáticamente en desgloses promediados de la energía y dirección de las olas, llamados espectros de olas oceánicas. ESA pone estos espectros a disposición del público; les sirven a los centros meteorológicos para mejorar la precisión de sus modelos de pronósticos marítimos.

"No se distribuyen las pequeñas imágenes en bruto, pero con su resolución de diez metros nosotros creíamos que contenían una riqueza de información útil por sí mismas", dijo Rosenthal. "Los espectros de olas oceánicas ofrecen promedios del estado marítimo, pero las pequeñas imágenes muestran las alturas individuales de las olas, incluyendo los extremos en que estábamos interesados.

"ESA nos suministró datos de tres semanas –alrededor de 30.000 pequeñas imágenes separadas– seleccionadas alrededor de la fecha en que fueron alcanzados el Bremen y el CaledonianStar. Las imágenes fueron procesadas y se las sometió a una búsqueda automática de olas extremas en el Centro Aeroespacial Alemán (DLR)".

A pesar del tiempo relativamente breve que cubrían los datos, el equipo MaxWave identificó más de diez olas individuales gigantes en todo el globo, superiores a los 25 metros de altura.

"Tras haber probado su existencia, en mayor número de lo que nadie esperaba, el siguiente paso es analizar si pueden ser pronosticadas", añadió Rosenthal. "MaxWave terminó formalmente al final del año pasado aunque actualmente hay dos líneas de trabajo que se derivan de él: uno es mejorar el diseño de buques, comprendiendo cómo se hunden éstos, y la otra es examinar más datos satelitales con vistas a analizar si es posible realizar pronósticos".

Un nuevo proyecto de investigación llamado WaveAtlas utilizará dos años de imágenes de ERS para crear un atlas mundial de olas gigantes y efectuar análisis estadísticos. La investigadora principal es SusanneLehner, profesora adjunta de la División de Física Marina Aplicada de la Universidad de Miami, quien también trabajó en MaxWave mientras estaba en DLR, y Rosenthal será un co-investigador del proyecto.

"Examinar las pequeñas imágenes da una sensación como de volar, porque uno sigue el estado del mar bajo el curso del satélite", dijo Lehner. "También se ven en ellas otras cosas como desprendimientos de hielo, manchas de petróleo y hasta barcos, y por eso hay interés en usarlas para otras áreas de estudio.
"Sólo los satélites de radar pueden ofrecer datos verdaderamente globales para el análisis estadístico del océanos, porque pueden ver a través de las nubes y de la oscuridad, a diferencia de sus contrapartes ópticas. En tiempo tormentoso, las imágenes de radar son, por lo tanto, la única información pertinente disponible".

Ya se han encontrado algunos patrones. Las olas gigantes suelen estar vinculadas con sitios donde las olas comunes se encuentran con corrientes y remolinos oceánicos. La fuerza de la corriente concentra la energía de la ola, formando olas mayores; Lehner la compara a una lente óptica, que concentra la energía lumínica en un área pequeña.

Esto es especialmente cierto en el caso de la notablemente peligrosa corriente de Agulhas, en la costa oriental de Sudáfrica, pero también pueden encontrarse olas gigantes vinculadas a otras corrientes como la Corriente del Golfo en el Atlántico Norte, en interacción con las olas que bajan del mar de Labrador.
Sin embargo, la información muestra que las olas gigantes también pueden producirse lejos de las corrientes, a menudo en la vecindad de frentes atmosféricos de alta o baja presión. Los vientos sostenidos de tormentas prolongadas, de más de 12 horas pueden amplificar las olas que se mueven a una velocidad óptima en sincronismo con el viento: si van demasiado rápidamente se adelantan a la tormenta y se disipan; si van demasiado lentamente, se quedan retrasadas.

"Conocemos algunas de las razones para las olas gigantes, pero no las sabemos todas", concluyó Rosenthal. El proyecto WaveAtlas está programado para continuar hasta el primer trimestre de 2005.


No hay comentarios:

Publicar un comentario